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NASA TT F-15,072

DETERMINATION OF THE PERTURBING MOMENTS DUE TO SOLAR

RADIATION PRESSURE FORCES ACTING ON A BODY OF REVOLUTION

Ye. \N. Polyakhova

It is known that solar radiation pressure forces cause /153*

the appearance of perturbing moments relative to the center

of mass of an artificial earth satellite (AES), the magnitude

of which depends on the reflective capacity of its surface, on

its shape, and on its orientation relative to the Sun. This moment

is a consequence of the fact that the center of radiation pressure,

as a rule, does not coincide with the center of mass of the AES.

We will examine the problem of deriving simple approximate

formulae, suitable for the evaluation of the perturbing moments

due to the pressure forces on an AES having the form of a body

of revolution.

I

; i r,...

Figure 1. The geometry of incident and reflected rays.

We will examine a unit area, ds, oriented at the angle

to the radiation flux I (Fig. 1) (the angle 0 is the angle

between the light ray , and the normal n, directed toward

the propagating light). Falling on it is a flux of radiating J

energy, S cos a (S is a "solar constant" in the earth's orbit, al

unit energy flux falling on an area normal to it). The corresp6nding

The corresponding amount of motion, imparted to the unit

*Numbers in right-hand margin indicate pagination in foreign text.



area by the flux of solar radiation, is Sc- cose, where c is

the speed of light. The modulus of the component of force dfl,

acting in the direction of the flux
', , is written thus:

d, pr(.O~c Ods (P _Sc -0.46 -10- dyn. ~). (1)

Besides the component df1, a second component df 2 acts on the

area, appearing as a result of the action of the reflected

ray, pointing in the direction opposite it; and having a modulus

C f - , , is, (2)

where e, the coefficient of reflection, is the ratio of the

densities of reflected energy and incident flux. In turn, one

may represent the force df 1 as the sum of two components, co-linear

with the vector T:

, d +d ,, df, =df df (3)

where

0 == ( P - o) s 4 ds ds, (fif e.), cos d s,

thus separating it from the component dfl, equal to df 2 . Con- /154

sidering the symmetry of the incident and reflected rays

relative to the normal n, one may conclude that the sum of the

vectors, df" and df 2, which are of equal modulus, is positioned,

in fact, along the normal n, and its modulus will be

dfn= 2sP, c,os-' ds. (5)

Thus, we may write the total force df as the sum of the component
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from the impact df l (partial) and the normal component df n

dIiff + da. \ (6)

Another representation of df is possible: if the remaining

force dfl, directed along ;z is broken into tangent and normal

components, dfl and dfl respectively (Fig. 1), then one can

represent the force df as the sum of the summed normals and the

tangential component:

We will now consider the AES (a body of revolution) and

assign to it the following system of coordinates, Oxyz: 0 is

the origin on the axis of revolution; the z axis runs along

the axis of revolution and is directed so that the inner normal

to the surface forms an acute angle with the z axis; the yz plane

is oriented so that it always contains the light flux 7. Pro-

jecting (6) onto the coordinate axes, we get

•dE = (1 - )Pr p s os (1, x) (IS '2. ,r c io cos (n, X) x ds,
' (7)

and so forth.

Setting up the integral formulae for the moments of the

radiation pressure forces, we also write them as the sum

AIM= y - Z- -)ds= M' + MA,

and so forth (8)

where A ., (1 - ,) . [, vos 1 ()os (l Z) .- z ( 4I) o 's (, I l as, a

., - 2 ',r IY f l f Y. ( tN , z) - Z (S,, cos (i, y)] ds. (81)

Formulae (8) and (8') make it possible to define the moments

of the pressure forces if cos 0 and the six direction cosines



of the incident ray . and of the normal to the surface n, cos

(,x) . . . cos (n,z), are known. The direction cosines of n

depend only on the shape of the surface and may be calculated /155

on the basis of the equation of the surface, (x,y,z) = 0,

according to the formula

COS(, x)= -

A X

Considering that products of the type cos (n,z)ds represent the

area of the projection of area ds onto the xy plane, i.e.,

ds = dxdy, we will write an expression for the moments in thexy
following manner:

, = 2 / , ( 1 -1 2 x), I(10)

I,x -- Sy ros' f dxdJy, lJx . ff Z cos2 } dzdx.

If cos 0 = const. (a plane), then it follows that one can calculate

these integrals in quadratics, substituting the corresponding

coordinate function for sxy , Sxz and s yz . In the general case of

an AES of arbitrary shape, it follows to evaluate beforehand an

approximate mean value of cos 20.

For the moments Mx from formula (8) one may write analogous

formulae

M.%,: a) P, K ,Sl).,x),

j, cos 4 cos (I z)dI( = dz cos0 cos (, y) ds.

(11)

For the representation in (11) it is more convenient to use

the expression

^_ _ . ^ . -^ (12)
c.S = cos (1 x) c', (n x) -- icos(i y) cos (n y) - cos (1 z) cos (I z).

Breaking each integral of type Klx into three integrals, we get
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n , , ,: (13)
41

where

AI= cos (I, x) SSydy dz; K2, cos ( x) f5z dy dz,

x = Cos (1 Y) jy dzdx; K. = cs (1y) z dz dx,

K x= cos (i-z) y dxdy; K' -= cos (1, z) , z dxdy.

It follows that the direction cosines cos (I x) may be

calculated earlier according to the conditions of illumination,

and the. integrals may be calculated in quadratics or according to

the formula of static moments:

SS y dx dy= y,s, y

where y c is the ordinate of the center of mass of the

area sxy (the projection of the illuminated part of the

surface of the AES onto the coordinate plane).

2. DETERMINATION OF THE MOMENTS, ACTING ON A CONICAL AND ON A
PARABOLIC AES

We will look at a conical AES, at the top O :of which we

will place the origin of the coordinates. Let the dimension R

and H=Rp- 1 be given so that the angle of the semi-span of the

cone may be taken as known. Let the ray ._ lie in the yz plane,

so that

osJ I x) =0, cos (ly)= - ,coS, , coS (lz)=: -sin i. (14)

The problem consists of determining the moments of the

radiation pressure forces for the conical surface pz - x + Y
2

= z tan 4 - r = 0, the direction cosines of the normals to

the surface being:
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COS (inx)
-r 0pu 

C.os (n y) r fp2+i' (15)

cos (n Z) p2+

while for the yz plane containing

the ray T we immediately get cos (n,) =

O, It is also easy to determine

the areas of the projectibn
Figure 2. A cone of

revolution. of the illuminated part of the

surface onto the coordinate planes.

Sy = R" S = RH si, 9.

We set up the expression for M':x

(1 )Pr [ cos(z) jydxdy - cos"2(1 y) z dzdx =
:= (1 - 8)P, [sil 2  I . :os2' P. ,]2, (16)

where the integrals I I and 12 must be calculated in the sector

Sxy and in the triangle s , as a result of which we get

I1=- 2* (dp cos l -ll(= - R:' sin ,

where = arctg / ctg- <.ctg - 1,
II + I(a) '

I = zdz dx= z(z) dz= R sin ,
0. -L(z) o

whereCF(z) =Rz sin6 is half of the line passing through the /157

triangle sxz parallel to its base (Fig. 2). From here

M.= (' -- ) Pr, sinl (R:' sinn -  RH 2 Co s" (2 ). (17)

I?

By analogous means we may get the formulae for M x

6



A IX= 2EPr (Q - Q 21 ()18)

SQ,=SS cOs'Oy dxdy, Q.= cos2Ozdxdz.

We set up the expression for cos 0 according to formula (12)

i . )(19)

x
from which it is evident that cos 0>0 for 2 2

1x + y

greater than p tan B, as a result of which the equation of the

terminator

Y P g

represents an equation of two generatrices of the cone, the

projections onto the xy plane tilted from the y axis to angles

of p and -i. Squaring (19), we derive two expressions for the

integration with respect to dxdy and dzdz:
A x

cost = A9 r- -- 2 A -Y  B -- -  -

2 A p + (A +I' B");p z

where cos p s'ilil

Carrying out the integration, we receive for Q1 and Q

2 / 2,

.- ABH;p 1 -- S i (A + B-:) RH" sin 4.
IT

Thus the problem of determining Mx according to formula (18) is

solved.

If several averaged values of cos20 for the illumination

of the surface are known beforehand, then, signifying it by a,
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one may write

For a it is convenient to take a constant value of /158

cos 2= (A-B)2 for the generatrix of the cone, lying in the plane

of the light flux T.

If it is necessary to move the moment to the center of mass

of the cone, that follows by the use of the formula

-ic= o- (OC x ) = A - 0o (oc)z ,
O RY R, I

where R = i f. is the main vector of the forces of pressure, thus

for a body of revolution, it is sufficient to determine only its
I IT

component Ry R + R according to the formulae

Ry='(1- ' ,cos O COS (I y) ds, fy=2Pr SS .os'L COs (I y) ds,

which for a cone takes on the following form:

R, = -- (1 -E) I, R' sill p o 4- RHI si I, ,J s 2 P],

-- (A '' - RHIsi , (20)

or for an approximate variation

RI, -PraRlsin

The magnitude of (OC) z will vary depending on the construction of

the cone: for a continuous, uniform.cone, (OC) z = OC = H;

for a hollow and open cone, OC = H; for a hollow and closed

cone,OC H ( + R), where is the length of the generatrix.
cone, OC -+R 7-

For a closed cone, it is easy to determine the moments of

forces acting on the base:

8



A1n. 7-= E) P, si . cs18J:?'HN M0=O, (21)

We will now look at a parabolic AES, oriented in a manner

similar to the cone (Fig. 3) with the equation of the surface

2 2 R2
2pz - (x + y ) = 0, where p =  is the parameter of the

2H
generatrix of the parabola. The direction cosines of the normal

to the paraboloid are such

-x -y-X) - " - y- "
c( 'S) -) 1v0+ ** + y- -y

(it / Z') - y2 + 22

thus for the yz plane, containing the light flux T, we have /159
iA

cos(n x) = 0. Correspondingly for cos 0 we get

cos0 if (ycs -psii). (
/x -- y -- 1z (22)

The equation of the termi-

nator in the given case is

the equation of the para-
2 2 2

i I bola x +p tan ~ = 2pz, the

- top of which lies above the

Yxy plane at a height h
54 1 2

= 2-p tan . The abscissas of

the points of the illuminated

Figure 3. Paraboloid of surface and of angle S satisfy

revolution, the conditions

-. /2p (H-h) x ." 2p (H-h), - -- [ : arctg-.

For 5 greater than arctan not one point on the outer surface is
p

illuminated. Deriving the integral with respect to dxdy and

dxdz for the parabolic surface, we get

9



SI ~,, 4 '1 / (23)

so that formula (16) is again used for the calculation of Mx
1T

Moving on to the calculation of Mx, we note that the

precise calculation of the integrals Q1 and Q2 from formula:

(18) is done in this case with too much difficulty, and for an

approximate evaluation it is sufficient to use an averaged value

of cos 2 0, which for a paraboloid will not be constant for the

directrix as in the case of the cone. For the determination of

a we square (22) and setting x=0 (the directrix, lying in the

plane of flux), we get the expression
(y 2 

(p p- siii 2

averaging which with respect to the directrix, we get the formula

for a: R -
a -- - os," dy = co* P - pR-' (sin I -

? ' . ()S 2 -) dy p

Scos2  ) arctg (pR-') -pR-' sll f cos in)
IP

Thus, the problem concerning the determination of Mx may be /160

considered solved.

For the area of the projection it is easy to get

xy = - R -- q /R - q -R arcsin - ,

SSz 4 V -(:--/ h):3 ",

so that for transfering the moment to the center of mass, it follows

to use the formulae

R, = _ l - S) P,(.i. n (',~( ~ .. - 3 S-• ), Ry 2ir X IZ'

(OC2 )=OC=-H (a continuous uniform paraboloid).

10



The following model problem will be carried out as an example

of the calculation of the moments of the radiation pressure forces

examined: determining the moments for two continuous uniform bodies,

a cone and a paraboloid with identical linear dimensions: R = 1 m,

H = 10 m while E = 0.5 over the entire range 01~83600. The results

of the calculation of the magnitude of M are presented in Fig. 4.

Shown in Fig. 5 are the moments M for the variation of approximate

evaluations of cos 2 along the directrix of the body. Shown in Fig. 6

is the total moment Mx(a), calculated relative to the top of the body

of revolution, and the moment, calculated relative to the base.

Presented in Fig. 7 are the moments transferred to the center of mass

(the continuous line corresponds to the cone; the dashed line, to

the paraboloid).

CONCLUSION

We have examined the problem concerning the analytical

determination of the moments of the solar ray pressure forces

on a body of revolution, located in the radiation flux. General

integration formulae were worked out separately for the moments

of the pressure forces directed along the ray of light, and of the

forces directed along the normal to the illuminated surfaces.

The acquired formulae, for the most part, are convenient for

approximate evaluations and rough estimates of the boundaries of

change of the magnitude of the perturbing moment of an AES for the

whole range of angles of illumination during its movement along

its orbit. The acquired results, presented graphically, allow:one

to make the basic conclusion that an elongated body, located in a

flux of radiation, will try to align itself lengthwise along the

flux as a result of the action of the perturbing moment. Here,

the perturbing moment of the pressure forces causes the turning

of the body about the Ox axis, perpendicular to the radiation flux P

and simultaneously perpendicular to the axis of revolution Oz.

11
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Figure 4. The moments M as a Figure 5. The moments M: as

function of angle functions of xangle
of illumination 8. of illumination 3.

M, .' o g o
0120

5 
I

2 0 . 18 270 J640" .040 /

-0,080

90 180 270 go _-0.20

Figure 6. Total moments M Figure 7. The moments M (moved
as functions ofx to the center of mass)
angle of illumination . as functions of angle

of illumination B.
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In the stated formulation of the problem, we confine

ourselves to the examination of the dependence of the moment

of the pressure forces on the angle of illumination, 8, by which /162

we mean the .angle between the ray z and the coordinate axis

which is perpendicular to the axis or revolution of the body.

For each specific body, formulae were worked out for the

connection of angle with the angle of incidence a , formed by the

ray k and the inner normal n, however, we did not connect the

angle B with time, i.e. with a specific position of the AES

in orbit and its orientation relative to the Sun. For the

solution of the problem of determining the moments at a given

moment of time, it is necessary to have available the dependence

B = (t), for which it follows that one must determine the

direction cosines of T with the axes of the orbital system of

coordinates according to the mutual positions or the AES of the

Sun and one must determine the orientation of the axis of revolution

of the AES relative to this same system along the given Eulerian

angles. If, for instance,

the AES is gravitationally

1.0 0 oriented, then the main

0, H=?O- axis of inertia (in our
S75i

case, of revolution) is

04 50. directed along a geogentric

0.30 , radius vector.

a15 -The presented formulae

10 20 30 50 60 70 80 P° for the moments were set up

Figure 8. Values of the parameter approximately under two
a as a function of the

basic simplifying assumptions.
angle of illumination B.

The first of these, as was

already pointed out, is that the light flux .2.is propogating in the

plane of symmetry of the arbitrarily oriented AES, containing

13



the axis of revolution: as a consequence of the symmetry of

forces, determined by the stated assumption, the general integral

formulae are substantially simplified. The second simplifying

assumption is used only during the determination of the moments
"c 2

M and relates to the magnitude of cos 0, which for sufficiently

simple bodies (a sphere, cylinder, or cone) may be calculated

exactly by means of the calculation of the corresponding surface

integrals. However, for more complex bodies, for instance, for a

paraboloid, the calculation of these integrals is much too

time consuming and it is more convenient to use a value of a

averaged along the directrix, placing it outside the integral sign.

The error, appearing as a result of such a substitute, may be

evaluated from the graphs in Fig. 8, where the following curves

are presented for selected model problems: "cone I(a)" is the

curve of a based on the approximating relation a = a(B) = cos 2=

= (A-B)2 (a directrix, lying in the plane of the flux); "cone

II(i.). is the curve of a = c, obtained according to the formula

in which Q1 ... I2 are calculated exactly with the help of an /163

integration (the sumbol ai corresponds to the integrated mean

value of a). A comparison of the curves shows that the use of an

approximate a gives an increased value of the moment to a maximum

of 1.3 times in comparison with the exact moment. The curve

"paraboloid (a)" corresponds to the approximate variation of a

(the exact value we will not derive), however, keeping in mind the

geometrical properties of a parabolic surface, one may assert

that the expected error in the determination of the moment will

not exceed the error for the cone.

All the ennumerated assumptions lead to a substantial

simplification of the formulae, as a result of which all the

14



integrals are expressed in quadratics while the rigorous analytic

determination of the moments of the radiation pressure forces is

extremely time-consuming even for simple surfaces and does not

have any advantage over numerical methods.
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